博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
在首次发布三周之后,MLflow迎来了0.2版本
阅读量:6435 次
发布时间:2019-06-23

本文共 1031 字,大约阅读时间需要 3 分钟。

在今年的Spark+AI峰会上,MLflow团队推出了MLflow,一个开源的用于简化机器学习生命周期的平台。从首次发布到现在的三周时间里,已经有很多数据科学家和工程师对使用MLflow和为MLflow贡献代码感兴趣。MLFlow的GitHub仓库已经有180个分支,其中有十几个贡献者提交了问题和拉取请求。此外,上周参加由该团队举办的第一次MLflow聚会的人数接近100人。

\\

昨天,该团队正式宣布推出MLflow 0.2版本,这一版本包含了由内部客户和开源用户提出的一些最被期待的功能。按照MLflow快速入门指南给出的提示,可以使用pip install mlflow来安装MLflow 0.2。以下内容将介绍该版本的主要新功能。

\\

内置TensorFlow集成

\\

MLflow让开发者可以基于任意机器学习库进行模型训练,只要可以将它们包装在Python函数中,但对于常用的库,MLflow团队希望能够提供内置的支持。该版本增加了mlflow.tensorflow包,借助这个包,开发者可以轻松地将TensorFlow模型记录到MLflow跟踪服务器中。在记录模型之后,可以立即将其传给受MLflow支持的各种部署工具(例如本地REST服务器、Azure ML服务或Apache Spark)。

\\

以下示例显示了用户如何记录经过训练的TF模型,并使用内置功能和pyfunc抽象进行部署。

\\

训练环境:保存训练过的的TF模型

\\
\# 将estimator保存成SavedModel格式。\estimator_path = your_regressor.export_savedmodel(model_dir, \receiver_fn)\ \# 记录导出的SavedModel。\# signature_def_key: 签名的名称,在加载SavedModel时使用\#                    参考: \(https://www.tensorflow.org/serving/signature_defs).\# artifact_path: 保存构件的位置\mlflow.tensorflow.log_saved_model(saved_model_dir=estimator_path,\                                  signature_def_key=\"predict\

转载地址:http://llhga.baihongyu.com/

你可能感兴趣的文章
Android特效专辑(十二)——仿支付宝咻一咻功能实现波纹扩散特效,精细小巧的View...
查看>>
数据挖掘中的概念描述
查看>>
struts2 依赖注入boolean类型的属性时报错
查看>>
应用生命周期终极 DevOps 工具包
查看>>
(iOS开发总结)MVC模式
查看>>
关于python进行批量数据备份及部署
查看>>
我的友情链接
查看>>
Oracle(一)
查看>>
极客班C++ STL(容器)第二周笔记
查看>>
备库设置read_only被阻塞
查看>>
微信营销这么做,你就成功了 转载
查看>>
文件系统管理
查看>>
C语言调用python代码
查看>>
csv文件导入导出到mysql
查看>>
redhat 安装Rabbitmq
查看>>
不常关注CSS
查看>>
最近工作的感想
查看>>
flashback table肯定会造成rowid跟着修改
查看>>
Administrator用户被禁用
查看>>
Python文本处理几种方法
查看>>